- Get link
- X
- Other Apps
\begin{aligned}
& \Rightarrow \mathrm{dE}=\frac{\mathrm{Adl}}{\mathrm{r}} \cdot 2 \sin \left(\frac{\omega \mathrm{t}-\mathrm{kr}+\mathrm{k} \Delta+\omega \mathrm{t}-\mathrm{kr}-\mathrm{k} \Delta}{2}\right) \cos \left(\frac{\omega \mathrm{t}-\mathrm{kr}+\mathrm{k} \Delta-\omega \mathrm{t}+\mathrm{kr}+\mathrm{k} \Delta}{2}\right) \\
& \Rightarrow \mathrm{dE}=\frac{2 \mathrm{Adl}}{\mathrm{r}} \sin \left(\frac{2 \omega \mathrm{t}-2 \mathrm{kr}}{2}\right) \cos \left(\frac{2 \mathrm{k} \Delta}{2}\right) \\
& \Rightarrow \mathrm{dE}=\frac{2 \mathrm{Adl}}{\mathrm{r}} \sin (\omega \mathrm{t}-\mathrm{kr}) \cos (\mathrm{k} \Delta) \\
& \Rightarrow \mathrm{dE}=\frac{2 \mathrm{~A}}{\mathrm{r}} \sin (\omega \mathrm{t}-\mathrm{kr}) \cos (\mathrm{kl} \sin \theta) \mathrm{dl}
As the wave eq is given by:
$$
\frac{\partial^2 y}{\partial x^2}=\frac{1}{v^2}\left(\frac{\partial^2 y}{\partial x^2}\right)
$$
We want to find out the solution of this equation.
We know that general formula for traveling wave is
$$
y(x, t)=f(x \pm v t)
$$
Let us suppose that equation (2) is the solution of (1).
Suppose $x \pm v t=z \quad----(A)$
Therefore, equation (2) can be written as
$$
y(x, t)=f(z)--^{-}-(B)
$$
Differetiating (B) w.r.t $\mathrm{x}$
$$
\begin{aligned}
& \frac{\partial y}{\partial x}=\frac{\partial f(z)}{\partial x} \\
& \Rightarrow \frac{\partial y}{\partial x}=\frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} \\
& \Rightarrow \frac{\partial y}{\partial x}=\frac{\partial f}{\partial z}
\end{aligned}
$$
Again differentiating yith respect to $x$ we get:
$$
\begin{aligned}
& \frac{\partial^2 y}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right) \\
& \Rightarrow \frac{\partial^2 y}{\partial x^2}=\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial x}\right) \\
& \frac{\partial^2 y}{\partial x^2}=\frac{\partial}{\partial z} \cdot \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} \quad \because \frac{\partial z}{\partial x}=\frac{\partial(x \pm v t)}{\partial x}=1 \\
& \Rightarrow \frac{\partial^2 y}{\partial x^2}=\frac{\partial^2 f}{\partial z^2}----(3)
\end{aligned}
$$
Similarly differentiating (B) with respect to $t$, we have:
$$
\frac{\partial y}{\partial t}=\frac{\partial f(z)}{\partial t}=\frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial t}
$$
Comments
Post a Comment